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Glucose is the most important carbohydrate in human 
metabolism. Many body tissues depend on glucose as a primary 
source of energy. To ensure that a sufficient supply is always 
available, the blood glucose concentration is maintained around 
S mM. In addition, the tissues retain an abundance of glucose 
transporters to facilitate glucose movement across the cell 
membranes.1 The transporters are integral proteins that act as 
passive and/or active membrane transport systems. Currently, 
there is much interest in elucidating the mechanism of these biotic 
transporters. While much structural data has been accumulated, 
the kinetic picture is still largely unknown.2 The development 
of artificial transporters for carbohydrate compounds, such as 
glucose, is a complementary research goal. In terms of applied 
technology, artificial transporters have potential as reagents for 
modulating the membrane permeability of selective biochemicals, 
or as drug transport devices for improving therapeutic efficacy. 
From the perspective of basic research, artificial systems represent 
simplified models that allow some of the structural and kinetic 
aspects of membrane transport theory to be tested.3 Previously, 
we and others have investigated the ability of boronic acids to 
facilitate the transport of saccharide derivatives through liquid 
organic membranes.4 Herein, we report that simple arylboronic 
acids, 1-7, and the alkyl derivative 9 are able to selectively facilitate 
the efflux of glucose from liposomes. To our knowledge this 
represents the first exampleof selective transport of acarbohydrate 
compound through a lipid bilayer mediated by an abiotic carrier. 

Glucose (typically 300 mM) was encapsulated inside large 
unilamellar vesicles (LUVs, 80 nm diameter, encapsulation 
volume 1.1 ftL/nmol of lipid), composed of dipalmitoylphos-
phatidyl choline (DPCC), cholesterol (C), and phosphatidic acid 
(PA) in the ratio 20:15:2. The liposomes were prepared by the 
rapid extrusion technique and were found to be essentially 
impermeable to glucose leakage over a number of days.5'6 Figure 
1 describes the glucose efflux experiment, which uses the standard 
hexokinase/glucose-6-phosphate dehydrogenase enzyme system 
for detection of escaped glucose.7 The enzymes are unable to 
penetrate the liposomes, thus an absorbance reading at 340 nm, 
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Figure 1. Liposome glucose efflux experiment. G = glucose, B = boronic 
acid, BG = glucose-boronate complex, Ei = hexokinase, E2 • glucose-
6-phosphate dehydrogenase, 6-PG = 6-phosphogluconate, NADP = 
nicotinamide adenine dinucleotide phosphate, NADPH = reduced form 
of nicotinamide adenine dinucleotide phosphate, ADP = adenosine 
diphosphate, ATP = adenosine triphosphate. 
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Figure 2. Percent glucose escaped at pH 7.5, from liposomes (LUVs; 
diameter 80 nm; composition, 20:15:2 DPPC:C:PA; total lipid concentra­
tion, 0.75 mM) containing 300 mM glucose, after treatment with (a) no 
boronic acid; (b) 1,1 mM; (c) 1, 5 mM; (d) 2,1 mM; and (e) 3,1 mM. 

due to NADPH formation, results only when a glucose molecule 
is released from the liposome. This proved to be a satisfactory 
assay system because the rates of glucose efflux were generally 
slow compared to the kinetics of the enzyme assay.8 As shown 
in Figure 2, addition of various boronic acid compounds induced 
glucose leakage from the liposomes. The rates of glucose efflux 
exhibited an approximate first-order dependence on boronic acid 
concentration .8 Glucose efflux from the liposomes continued until 
the liposomes were completely empty. This active transport effect 
is attributed to the destructive assay which continually removes 
glucose from the system. 

The following control experiments strongly indicated that the 
glucose efflux was due to a selective transport process and not 
a general increase in liposome permeability. 

1. Essentially no glucose efflux was observed upon addition 
of large amounts of structurally related organic compounds such 
as phenol or benzoic acid derivatives (100 mM), or organic solvents 
such as methanol and dimethyl sulfoxide (up to 10% of the sample 
volume). As described in Table 1, negligible glucose efflux was 
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Table 1. Relative Rates of Glucose Efflux at pH 7.5, pA,'s, and 
Substituent Hydrophobicity Constants for Various Boronic Acid 
Derivatives 

boronic acid, RB(OH)2 

rel rate sum 
of efflux of IT 
(±15%) pATa values" 

phenylboronic acid, 1 
(3,5-dichlorophenyl)boronic acid, 2 
[3,5-bis(trifluoromethyl)phenyl]boronic acid, 3 30 
(4-methylphenyl)boronic acid, 4 
(4-methoxyphenyl)boronic acid, 5 
(3-methoxyphenyl)boronic acid, 6 
(4-fert-butylphenyl)boronic acid, 7 
(4-carboxyphenyl)boronic acid, 8 
1-butylboronic acid, 9 
boric acid, 10 

1 
15 
30 

1.9 
0.8 
0.9 

30 
0.02 
0.3 

1(H 

8.9» 
7.4' 
7.2C 

9.3» 
9.3» 
8.7' 
9.3' 
8.4^ 

10.4« 
9.0« 

0.0 
1.42 
1.76 
0.56 

-0.02 
-0.02 

1.98 
-4.36 

" Sum of the hydrophobicity constants for all aryl substituents except 
the boronic acid, ref 9a. » Reference 9b . c Determined by the method 
described in ref 9c. * Reference 9d. ' Reference 9e. 

observed in the presence of extremely hydrophilic boron acids 
such as (4-carboxyphenyl)boronic acid, 8 (25 mM), and boric 
acid, 10 (100 mM). 

2. Experiments with other encapsulated marker compounds 
showed no change in liposome permeability under the conditions 
used to determine glucose efflux. For example, a standard leakage 
experiment with carboxyfluorescein was conducted.10 When 
encapsulated at a high concentration, carboxyfluorescein produces 
little fluorescence due to self-quenching; however, once carboxy­
fluorescein is released from the liposomes, fluorescence increases 
significantly. This phenomenon was immediately observed when 
the liposomes were lysed with the detergent Triton X-100, but 
no such efflux was observed when the liposomes were treated 
with any of the boronic acids described in Figure 2. Similar 
experiments with the dyes, calcein (fluorescence assay),10 and 
arsenazo III (absorption assay),11 as well as the anionic carbo­
hydrate derivatives, glucose 6-phosphate and isocitrate (dehy­
drogenase enzyme assays),12 gave the same results.13 

3. Leakage experiments were conducted with a mixture of 
glucose (200 mM) and calcein (100 mM) encapsulated inside the 
liposomes. Treatment with the boronic acids described in Figure 
2 produced glucose efflux rates very similar to those observed in 
the absence of encapsulated calcein. The fluorescence assay, 
however, showed no calcein leakage. Thus the boronic acids were 
able to selectively transport glucose in the presence of calcein. 

Attempts to elucidate the transport mechanism have been 
initiated. As with any liposome efflux experiment the possibility 
of a membrane potential complicates any mechanistic interpreta­
tion. Previous work with liquid organic membranes has shown 
that boronic acids can transport diol compounds by forming 
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reversible trigonal or tetrahedral diol-boronate complexes.4 

Inspection of Table 1 suggests that efflux is more dependent on 
the lipophilicity of the boronic acid (as judged by hydrophobicity 
constant, ir) than the acidity (as judged by pATa).

8-14 To gain 
further mechanistic insight, the effect of pH and added lipophilic 
ions on glucose efflux rates was investigated. The direction of 
the pH effect depended on the pKa of the boronic acid; glucose 
efflux was a maximum when the pH was just below the boronic 
acid pKh. The effect of added lipophilic ions was independent of 
boronic acid identity. In the presence of tetrabutylammonium 
chloride (5 mM), boronic acid mediated efflux increased 2-4 
fold. Addition of large amounts of sodium perchlorate (150 mM), 
however, had no effect on efflux rates. Control experiments 
showed that, in the absence of boronic acid, liposome permeability 
was unaffected by these changes in pH or salt additions. 
Repeating the glucose efflux experiments with positively charged 
liposomes (i.e., liposomes composed of DPPC:C:dodecyltri-
methylammonium bromide, 20:15:2), under the conditions de­
scribed in Figure 2, resulted in very similar rates of glucose efflux. 

With the evidence in hand, it appears that the transport 
mechanism includes the following key points. The neutral boronic 
acid enters the liposome and combines with an appropriate diol 
functionality on the glucose to form a tetrahedral glucose-boronate 
anion that is attracted to the ionic bilayer surface. In the presence 
of added lipophilic cations, the tetrahedral glucose-boronate may 
traverse the bilayer as a lipophilic ion pair. Whether a counterion 
is present when the lipophilic cations are absent is not clear. A 
counter-transport mechanism involving entry of uncomplexed 
boronate anion into the liposome with concomitant exit of anionic 
glucose-boronate complex is plausible. On the other hand, the 
tetrahedral glucose-boronate may be in equilibrium with its 
neutral, conjugate-acid, trigonal structure, which is the actual 
transported species. The fact that weak organic acids and bases 
can permeate bilayer membranes via their chemically neutral 
forms (even under conditions where the neutral forms are present 
in minor amounts) is evidence in favor of the latter explanation.15 

Additional mechanistic studies are in progress, as well as efforts 
to ascertain if other biomolecules can be transported by this 
method.13 
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